The area of a hexagon can be calculated using the following formula: if you know the perimeter and the apothem.
If you know the length of the perimeter in a hexagon and the apothem, you can calculate its area using the following formula:
$$"area" = (p * a)/2 $$
$$p = "perimeter value"$$
$$a = "apothem: distance from the center to the closest point in the figure"$$
It is a geometric figure with 6 sides, all the sides have equal length. Also an hexagon has all the same angles. all regular hexagons look the same.
An irregular hexagon can have vitually infinite posibles shapes, Despite this all have 6 sides.
The apothem it´s the distance between the center of the geometric figure and the closest point in the figure to the center.
It is the space of the internal surface in a figure, it is limited for the perimeter. Also, the area can be calculated in a plane of two dimensions.
It is a representation of a rule or a general principle using letters. (Algebra, A. Baldor)
When describing formulas in plural, it is also valid to say "formulae".
WikiFormulas.com is a database of embeddable formulas, equations and calculators. You are allowed to use our calculators in any project as long as you give attribution.
© 2017– WikiFormulas.com. Privacy Policy
All rights reserved